Я пытаюсь написать Явский файл, который получает исходный код работы MapReduce, собирает его динамично и управляет работой на группе Hadoop. Чтобы достигнуть этого, я написал, что 3 названные метода собирают (), makeJAR() и run_Hadoop_Job (). Все хорошо работает с компиляцией и созданием файла БАНКИ. Однако, когда работа представлена Hadoop, как только работа начинается, это стоит перед проблемой с нахождением необходимых классов Картопостроителя/Преобразователя данных и бросает ClassNotFoundException и для Mapper_Class и для Reducer_Class * (java.lang. ClassNotFoundException: reza.rCloud. Mapper_Reducer_Classes$Mapper_Class.class) * . Я знаю, что должно быть что-то не так с тем, как я сослался на необходимые классы Картопостроителя/Преобразователя данных, но я не смог понять его после нескольких. Любая помощь/предложение о том, как решить проблему, высоко ценится.
Regarding the details of the project: I have a file called "rCloud_test/src/reza/Mapper_Reducer_Classes.java" that contains the source code for Mapper_Class and Reducer_Class. This file is ultimately received during the runtime but for now I copied the Hadoop WordCount example in it and store it locally in the same folder as my main class file: rCloud_test/src/reza/Platform2.java.
Ниже вы видите основное() метод Platform2.java, который является моим главным классом для этого проекта:
public static void main(String[] args){
System.out.println("Code Execution Started");
String className = "Mapper_Reducer_Classes";
Platform2 myPlatform = new Platform2();
//step 1: compile the received class file dynamically:
boolean compResult = myPlatform.compile(className);
System.out.println(className + ".java compilation result: "+compResult);
//step 2: make a JAR file out of the compiled file:
if (compResult) {
compResult = myPlatform.makeJAR("jar_file", myPlatform.compilation_Output_Folder);
System.out.println("JAR creation result: "+compResult);
}
//step 3: Now let's run the Hadoop job:
if (compResult) {
compResult = myPlatform.run_Hadoop_Job(className);
System.out.println("Running on Hadoop result: "+compResult);
}
Метод, который вызывает меня все проблемы, является run_Hadoop_Job (), который является как указано ниже:
private boolean run_Hadoop_Job(String className){
try{
System.out.println("*Starting to run the code on Hadoop...");
String[] argsTemp = { "project_test/input", "project_test/output" };
Configuration conf = new Configuration();
conf.set("fs.default.name", "hdfs://localhost:54310");
conf.set("mapred.job.tracker", "localhost:54311");
conf.set("mapred.jar", jar_Output_Folder + "/jar_file"+".jar");
conf.set("libjars", required_Execution_Classes);
//THIS IS WHERE IT CAN'T FIND THE MENTIONED CLASSES, ALTHOUGH THEY EXIST BOTH ON DISK
//AND IN THE CREATED JAR FILE:??????
System.out.println("Getting Mapper/Reducer package name: " +
Mapper_Reducer_Classes.class.getName());
conf.set("mapreduce.map.class", "reza.rCloud.Mapper_Reducer_Classes$Mapper_Class");
conf.set("mapreduce.reduce.class", "reza.rCloud.Mapper_Reducer_Classes$Reducer_Class");
Job job = new Job(conf, "Hadoop Example for dynamically and programmatically compiling-running a job");
job.setJarByClass(Platform2.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(argsTemp[0]));
FileSystem fs = FileSystem.get(conf);
Path out = new Path(argsTemp[1]);
fs.delete(out, true);
FileOutputFormat.setOutputPath(job, new Path(argsTemp[1]));
//job.submit();
System.out.println("*and now submitting the job to Hadoop...");
System.exit(job.waitForCompletion(true) ? 0 : 1);
System.out.println("Job Finished!");
} catch (Exception e) {
System.out.println("****************Exception!" );
e.printStackTrace();
return false;
}
return true;
}
в случае необходимости вот является исходный код для собирания() методом:
private boolean compile(String className) {
String fileToCompile = JOB_FOLDER + "/" +className+".java";
JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();
FileOutputStream errorStream = null;
try{
errorStream = new FileOutputStream(JOB_FOLDER + "/logs/Errors.txt");
} catch(FileNotFoundException e){
//if problem creating the file, default wil be console
}
int compilationResult =
compiler.run( null, null, errorStream,
"-classpath", required_Compilation_Classes,
"-d", compilation_Output_Folder,
fileToCompile);
if (compilationResult == 0) {
//Compilation is successful:
return true;
} else {
//Compilation Failed:
return false;
}
}
и исходный код для makeJAR() метод:
private boolean makeJAR(String outputFileName, String inputDirectory) {
Manifest manifest = new Manifest();
manifest.getMainAttributes().put(Attributes.Name.MANIFEST_VERSION,
"1.0");
JarOutputStream target = null;
try {
target = new JarOutputStream(new FileOutputStream(
jar_Output_Folder+ "/"
+ outputFileName+".jar" ), manifest);
add(new File(inputDirectory), target);
} catch (Exception e) { return false; }
finally {
if (target != null)
try{
target.close();
} catch (Exception e) { return false; }
}
return true;
}
private void add(File source, JarOutputStream target) throws IOException
{
BufferedInputStream in = null;
try
{
if (source.isDirectory())
{
String name = source.getPath().replace("\\", "/");
if (!name.isEmpty())
{
if (!name.endsWith("/"))
name += "/";
JarEntry entry = new JarEntry(name);
entry.setTime(source.lastModified());
target.putNextEntry(entry);
target.closeEntry();
}
for (File nestedFile: source.listFiles())
add(nestedFile, target);
return;
}
JarEntry entry = new JarEntry(source.getPath().replace("\\", "/"));
entry.setTime(source.lastModified());
target.putNextEntry(entry);
in = new BufferedInputStream(new FileInputStream(source));
byte[] buffer = new byte[1024];
while (true)
{
int count = in.read(buffer);
if (count == -1)
break;
target.write(buffer, 0, count);
}
target.closeEntry();
}
finally
{
if (in != null)
in.close();
}
}
и наконец фиксированные параметры, используемые для доступа к файлам:
private String JOB_FOLDER = "/Users/reza/My_Software/rCloud_test/src/reza/rCloud";
private String HADOOP_SOURCE_FOLDER = "/Users/reza/My_Software/hadoop-0.20.2";
private String required_Compilation_Classes = HADOOP_SOURCE_FOLDER + "/hadoop-0.20.2-core.jar";
private String required_Execution_Classes = required_Compilation_Classes + "," +
"/Users/reza/My_Software/ActorFoundry_dist_ver/lib/commons-cli-1.1.jar," +
"/Users/reza/My_Software/ActorFoundry_dist_ver/lib/commons-logging-1.1.1.jar";
public String compilation_Output_Folder = "/Users/reza/My_Software/rCloud_test/dyn_classes";
private String jar_Output_Folder = "/Users/reza/My_Software/rCloud_test/dyn_jar";
В результате управления Platform2, структурой проекта на видах диска как указано ниже:
rCloud_test/classes/reza/rCloud/Platform2.class: содержите класс Platform2
rCloud_test/dyn_classes/reza/rCloud/содержит классы для Mapper_Reducer_Classes.class, Mapper_Reducer_Classes$Mapper_Class.class и Mapper_Reducer_Classes$Reducer_Class.class
rCloud_test/dyn_jar/jar_file.jar содержит созданный файл банки
REVSED: вот исходный код для rCloud_test/src/reza/rCloud/Mapper_Reducer_Classes.java:
package reza.rCloud;
import java.io.IOException;
import java.lang.InterruptedException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Mapper_Reducer_Classes {
/**
* The map class of WordCount.
*/
public static class Mapper_Class
extends Mapper